環境
- Xcode 11.4.1
- Swift 5
- iOS 13.4.1
参考にしたサイト
1.Open Image Dataset のすべてのデータをダウンロードするには重すぎるため、指定したタグの画像のみダウンロードする。
まず、Explore画面にて、画像のタグを確認する
2.次に「OIDv4-Tooklit」を使って画像をダウンロードする。
Gitはこちらhttps://github.com/EscVM/OIDv4_ToolKit
レポジトリをクローン
git clone https://github.com/EscVM/OIDv4_ToolKit.git環境設定
cd OIDv4_ToolKit pip install -r requirements.txtmain.py を実行
python3 main.py downloader --classes Carrot --type_csv train--classesのあとにダウンロード対象のタグを指定する。上記の例の場合はCarrot(人参)
--type_csvのあとに訓練データ(train)、検証データ(validation)、テストデータ(test)を指定できる。すべての場合はall。
ダウンロードしたファイルのフォルダ構成は以下
train ├─Bell Pepper ├─Cabbage ├─Carrot ├─Potato └─Tomato test ├─Bell Pepper ├─Cabbage ├─Carrot ├─Potato └─Tomato3.MLファイルを作成する。
xcodeのOpen Develper Tool > CreateMLを起動
NewDocumentを選択したのち、Image Classifierを選択
ProjectName等を記入
Training DataとTesting Dataそれぞれに画像が入ったtrainフォルダ、testフォルダをドラッグ&ドロップ
最後にTrainボタンを押す
古いMacですが、Training Dataが2,836枚、Testing Dataが566枚で15分くらいで完了
作成したOutputファイルはドラッグ&ドロップで取り出せます
0 件のコメント:
コメントを投稿