-->

2020年5月3日日曜日

JSONデータを取り込んでRealmに保存する

プロジェクト内のJSONデータをRealmのモデルに変換して保存する。
xmlやplistを使うことも考えたが、codableを使うことで独自のモデルにも容易に対応させることができた。

環境


  • Xcode 11.4.1
  • Swift 5
  • iOS 13.4.1

StringやIntなどは自動Codableに準拠しているので、encodeやdecodeメソッドを使う必要はないが、
今回はその他のデータ型にも対応できるようにencode、decodeメソッドを実装した。

モデル[Recipe]

  1. import Foundation
  2. import RealmSwift
  3.  
  4. class Recipe: Object,Decodable {
  5. @objc dynamic var name = ""
  6. @objc dynamic var category = ""
  7. @objc dynamic var country = ""
  8. @objc dynamic var season = ""
  9. var ingredients = List<Ingredient>() //RecipeとIngredientは1対多
  10. override static func primaryKey() -> String? {
  11. return "name"
  12. }
  13. private enum CodingKeys:String,CodingKey{
  14. case name
  15. case category
  16. case country
  17. case season
  18. case ingredients
  19. }
  20. required convenience public init(from decoder:Decoder) throws{
  21. self.init()
  22. let container = try decoder.container(keyedBy: CodingKeys.self)
  23.  
  24. name = try container.decode(String.self, forKey: .name)
  25. category = try container.decode(String.self, forKey: .category)
  26. country = try container.decode(String.self, forKey: .country)
  27. season = try container.decode(String.self, forKey: .season)
  28. //一度配列に格納した後、Listに変換する
  29. let ingredientsArray = try container.decode([Ingredient].self, forKey: .ingredients)
  30. ingredients = ingredientsArray.reduce(List<Ingredient>()) {$0.append($1); return $0}
  31. }
  32. }

モデル[ingredient]

  1. import Foundation
  2. import RealmSwift
  3.  
  4. class Ingredient: Object,Decodable {
  5. @objc dynamic var name = ""
  6. let recipes = LinkingObjects(fromType: Recipe.self, property: "ingredients")
  7. private enum CodingKeys: String, CodingKey {
  8. case name
  9. }
  10. required convenience public init(from decoder: Decoder) throws {
  11. self.init()
  12. let container = try decoder.container(keyedBy: CodingKeys.self)
  13.  
  14. name = try container.decode(String.self, forKey: .name)
  15.  
  16. }
  17. }

JSONファイル

[
        {
        "name": "トマトパスタ",
        "category": "パスタ",
        "country": "イタリアン",
        "season": "Any",
        "ingredients":[
            {
                "name": "トマト"
            },
            {
                "name": "にんにく"
            }
        ]
        },
        {
        "name": "カツ丼",
        "category": "丼ぶり",
        "country": "和食",
        "season": "Any",
        "ingredients":[
            {
                "name": "たまねぎ"
            },
            {
                "name": "卵"
            },
            {
                "name": "豚肉"
            }
        ]
        },
        {
        "name": "ペペロンチーノ",
        "category": "パスタ",
        "country": "イタリアン",
        "season": "Any",
        "ingredients":[
            {
                "name": "にんにく"
            },
            {
                "name": "鷹の爪"
            }
        ]
        },
        {
        "name": "カレー",
        "category": "カレー",
        "country": "和食",
        "season": "Any",
        "ingredients":[
            {
                "name": "人参"
            },
            {
                "name": "たまねぎ"
            },
            {
                "name": "じゃがいも"
            },
            {
                "name": "牛肉"
            }
        ]
        },
        {
        "name": "シチュー",
        "category": "シチュー",
        "country": "和食",
        "season": "Any",
        "ingredients":[
            {
                "name": "人参"
            },
            {
                "name": "たまねぎ"
            },
            {
                "name": "じゃがいも"
            },
            {
                "name": "牛肉"
            }
        ]
        },
        {
        "name": "炒飯",
        "category": "ご飯",
        "country": "中華",
        "season": "Any",
        "ingredients":[
            {
                "name": "人参"
            },
            {
                "name": "たまねぎ"
            },
            {
                "name": "卵"
            },
            {
                "name": "にんにく"
            }
        ]
        },
        {
        "name": "炊き込みご飯",
        "category": "ご飯",
        "country": "和食",
        "season": "Any",
        "ingredients":[
            {
                "name": "人参"
            },
            {
                "name": "椎茸"
            },
            {
                "name": "鶏肉"
            },
            {
                "name": "大葉"
            }
        ]
        }
]

JSONデータの取り込み

  1. //JSONファイルのパスを取得
  2. guard let path = Bundle.main.path(forResource: "RecipesList", ofType: "json") else { return }
  3. let url = URL(fileURLWithPath: path)
  4. do {
  5. let realm = try! Realm()
  6.  
  7. let data = try Data(contentsOf: url)
  8. let recipe_obj = try! JSONDecoder().decode([Recipe].self, from: data)
  9.  
  10. try! realm.write {
  11. realm.deleteAll()
  12. realm.add(recipe_obj, update: true)
  13. //人参を使うレシピを取得・表示
  14. var objects: Results<Recipe>
  15. objects = realm.objects(Recipe.self).filter("SUBQUERY(ingredients, $ingredient, $ingredient.name = %@).@count >= 1","人参")
  16. print("objectsの中",objects)
  17. }
  18. } catch {
  19. print("エラー")
  20. }

参考にしたサイト

https://qiita.com/cottpan/items/4bb5ad8bce2e28c0220a

2020年5月2日土曜日

モデルが持つ配列内を検索し、条件に該当するモデルを取得する

モデルが持つ配列内を検索し、条件に該当するモデルを取得する
モデルデータ
  1. //レシピモデル
  2. class Recipe: Object {
  3. @objc dynamic var name = ""
  4. @objc dynamic var category = ""
  5. @objc dynamic var country = ""
  6. @objc dynamic var season = ""
  7. let ingredients = List() //レシピと材料は1対多の関係
  8. override static func primaryKey() -> String? {
  9. return "name"
  10. }
  11. }
  12. //材料モデル
  13. class Ingredient: Object {
  14. @objc dynamic var name = ""
  15. let recipes = LinkingObjects(fromType: Recipe.self, property: "ingredients")
  16. }

モデルデータの格納、検索、表示
  1. do {
  2. //トマトパスタ、カツ丼、カレーの3つのレシピのモデルを作成
  3. let realm = try Realm()
  4. let dictionary1: [String: Any] =
  5. ["name": "トマトパスタ",
  6. "category": "パスタ",
  7. "country" : "イタリア",
  8. "season" : "春",
  9. "ingredients":[["name": "トマト"],["name": "にんにく"]]
  10. ]
  11.  
  12. let dictionary2: [String: Any] =
  13. ["name": "カツ丼",
  14. "category": "丼",
  15. "country" : "日本",
  16. "season" : "夏",
  17. "ingredients":[["name": "たまねぎ"],["name": "卵"]]
  18. ]
  19. let dictionary3: [String: Any] =
  20. ["name": "カレー",
  21. "category": "カレー",
  22. "country" : "日本",
  23. "season" : "夏",
  24. "ingredients":[["name": "たまねぎ"],["name": "にんじん"],["name":"じゃがいも"]]
  25. ]
  26. let recipe1 = Recipe(value: dictionary1)
  27. let recipe2 = Recipe(value: dictionary2)
  28. let recipe3 = Recipe(value: dictionary3)
  29. try! realm.write {
  30. realm.deleteAll() //既に保存済のモデルを一旦削除
  31. realm.add(recipe1)//レシピモデルの保存
  32. realm.add(recipe2)//レシピモデルの保存
  33. realm.add(recipe3)//レシピモデルの保存
  34.  
  35. //材料にたまねぎを使用するレシピモデルを取得する
  36. var objects: Results<Recipe>
  37. objects = realm.objects(Recipe.self).filter("SUBQUERY(ingredients, $ingredient, $ingredient.name = %@).@count >= 1","たまねぎ")
  38. print("objectsの中",objects)
  39. }
  40. } catch {
  41. print("エラー")
  42. }

出力結果
objectsの中 Results <0x10461f0e0> (
 [0] Recipe {
  name = カツ丼;
  category = 丼;
  country = 日本;
  season = 夏;
  ingredients = List <0x280756760> (
   [0] Ingredient {
    name = たまねぎ;
   },
   [1] Ingredient {
    name = 卵;
   }
  );
 },
 [1] Recipe {
  name = カレー;
  category = カレー;
  country = 日本;
  season = 夏;
  ingredients = List <0x280756880> (
   [0] Ingredient {
    name = たまねぎ;
   },
   [1] Ingredient {
    name = にんじん;
   },
   [2] Ingredient {
    name = じゃがいも;
   }
  );
 }
)

2020年4月30日木曜日

エラー"No viable overloaded ="の解決方法

環境
  • Xcode 11.4.1
  • Swift 5
  • iOS 13.4.1
RealmSwiftを使う際にエラー"No viable overloaded ="が出た場合の対処方法


Realmのバージョンを指定して再インストールする
Podファイルを開き、次のように書き換える
pod 'RealmSwift', '~> 3.18.0'
ターミナルで以下を実行
pod repo update
pod install

XcodeのCreateMLを使ってMLモデルファイルを作成

今回は野菜の画像認識を実装したいので、野菜の画像データを集めてMLモデルファイルを作成する。
環境
  • Xcode 11.4.1
  • Swift 5
  • iOS 13.4.1

参考にしたサイト

1.Open Image Dataset のすべてのデータをダウンロードするには重すぎるため、指定したタグの画像のみダウンロードする。
まず、Explore画面にて、画像のタグを確認する
2.次に「OIDv4-Tooklit」を使って画像をダウンロードする。
Gitはこちらhttps://github.com/EscVM/OIDv4_ToolKit
レポジトリをクローン
git clone https://github.com/EscVM/OIDv4_ToolKit.git
環境設定
cd OIDv4_ToolKit
pip install -r requirements.txt
main.py を実行
python3 main.py downloader --classes Carrot --type_csv train
--classesのあとにダウンロード対象のタグを指定する。上記の例の場合はCarrot(人参)
--type_csvのあとに訓練データ(train)、検証データ(validation)、テストデータ(test)を指定できる。すべての場合はall。
ダウンロードしたファイルのフォルダ構成は以下
train
├─Bell Pepper
├─Cabbage
├─Carrot
├─Potato
└─Tomato
test
├─Bell Pepper
├─Cabbage
├─Carrot
├─Potato
└─Tomato
3.MLファイルを作成する。
xcodeのOpen Develper Tool > CreateMLを起動
NewDocumentを選択したのち、Image Classifierを選択
ProjectName等を記入
Training DataとTesting Dataそれぞれに画像が入ったtrainフォルダ、testフォルダをドラッグ&ドロップ

最後にTrainボタンを押す
古いMacですが、Training Dataが2,836枚、Testing Dataが566枚で15分くらいで完了
作成したOutputファイルはドラッグ&ドロップで取り出せます


カメラ画像からリアルタイムで画像認識

環境
  • Xcode 11.4.1
  • Swift 5
  • iOS 13.4.1

参考にしたサイト

SceneDelegate.swift
import UIKit

class SceneDelegate: UIResponder, UIWindowSceneDelegate {

    var window: UIWindow?

    func scene(_ scene: UIScene, willConnectTo session: UISceneSession, options connectionOptions: UIScene.ConnectionOptions) {
        // Use this method to optionally configure and attach the UIWindow `window` to the provided UIWindowScene `scene`.
        // If using a storyboard, the `window` property will automatically be initialized and attached to the scene.
        // This delegate does not imply the connecting scene or session are new (see `application:configurationForConnectingSceneSession` instead).
        //guard let _ = (scene as? UIWindowScene) else { return }
        
        guard let windowScene = (scene as? UIWindowScene) else { return }
        let window = UIWindow(windowScene: windowScene)
        self.window = window
        window.rootViewController = ViewController(nibName: nil, bundle: nil)
        window.makeKeyAndVisible()
    }

    func sceneDidDisconnect(_ scene: UIScene) {
        // Called as the scene is being released by the system.
        // This occurs shortly after the scene enters the background, or when its session is discarded.
        // Release any resources associated with this scene that can be re-created the next time the scene connects.
        // The scene may re-connect later, as its session was not neccessarily discarded (see `application:didDiscardSceneSessions` instead).
    }

    func sceneDidBecomeActive(_ scene: UIScene) {
        // Called when the scene has moved from an inactive state to an active state.
        // Use this method to restart any tasks that were paused (or not yet started) when the scene was inactive.
    }

    func sceneWillResignActive(_ scene: UIScene) {
        // Called when the scene will move from an active state to an inactive state.
        // This may occur due to temporary interruptions (ex. an incoming phone call).
    }

    func sceneWillEnterForeground(_ scene: UIScene) {
        // Called as the scene transitions from the background to the foreground.
        // Use this method to undo the changes made on entering the background.
    }

    func sceneDidEnterBackground(_ scene: UIScene) {
        // Called as the scene transitions from the foreground to the background.
        // Use this method to save data, release shared resources, and store enough scene-specific state information
        // to restore the scene back to its current state.
    }


}
UIButtonの場合
 
import UIKit
import AVFoundation
import Vision

class ViewController: UIViewController, AVCaptureVideoDataOutputSampleBufferDelegate {
    
    let label: UILabel = {
        let label = UILabel()
        label.textColor = .white
        label.translatesAutoresizingMaskIntoConstraints = false
        label.text = "Label"
        label.font = label.font.withSize(30)
        return label
    }()
    
    override func viewDidLoad() {
        // call the parent function
        super.viewDidLoad()
        
        // establish the capture session and add the label
        setupCaptureSession()
        view.addSubview(label)
        setupLabel()
    }
    
    override func didReceiveMemoryWarning() {
        // call the parent function
        super.didReceiveMemoryWarning()
        
        // Dispose of any resources that can be recreated.
    }
    
    func setupCaptureSession() {
        // create a new capture session
        let captureSession = AVCaptureSession()
        
        // find the available cameras
        let availableDevices = AVCaptureDevice.DiscoverySession(deviceTypes: [.builtInWideAngleCamera], mediaType: AVMediaType.video, position: .back).devices
        
        do {
            // select a camera
            if let captureDevice = availableDevices.first {
                captureSession.addInput(try AVCaptureDeviceInput(device: captureDevice))
            }
        } catch {
            // print an error if the camera is not available
            print(error.localizedDescription)
        }
        
        // setup the video output to the screen and add output to our capture session
        let captureOutput = AVCaptureVideoDataOutput()
        captureSession.addOutput(captureOutput)
        let previewLayer = AVCaptureVideoPreviewLayer(session: captureSession)
        previewLayer.frame = view.frame
        view.layer.addSublayer(previewLayer)
        
        // buffer the video and start the capture session
        captureOutput.setSampleBufferDelegate(self, queue: DispatchQueue(label: "videoQueue"))
        captureSession.startRunning()
    }
    
    func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) {
        // load our CoreML Pokedex model
        guard let model = try? VNCoreMLModel(for: MobileNetV2().model) else { return }
        // run an inference with CoreML
        let request = VNCoreMLRequest(model: model) { (finishedRequest, error) in
            // grab the inference results
            guard let results = finishedRequest.results as? [VNClassificationObservation] else { return }
            
            // grab the highest confidence result
            guard let Observation = results.first else { return }
            
            // create the label text components
            let predclass = "\(Observation.identifier)"
            let predconfidence = String(format: "%.02f%", Observation.confidence * 100)
            // set the label text
            DispatchQueue.main.async(execute: {
                self.label.text = "\(predclass) \(predconfidence)"
            })
        }
        
        // create a Core Video pixel buffer which is an image buffer that holds pixels in main memory
        // Applications generating frames, compressing or decompressing video, or using Core Image
        // can all make use of Core Video pixel buffers
        guard let pixelBuffer: CVPixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else { return }
        
        // execute the request
        try? VNImageRequestHandler(cvPixelBuffer: pixelBuffer, options: [:]).perform([request])
    }
    
    func setupLabel() {
        // constrain the label in the center
        label.centerXAnchor.constraint(equalTo: view.centerXAnchor).isActive = true

        // constrain the the label to 50 pixels from the bottom
        label.bottomAnchor.constraint(equalTo: view.bottomAnchor, constant: -50).isActive = true
    }
}

2016年1月7日木曜日

Add-Hocで公開

最近作ったアプリをAd-Hoc版としてwebからインストールできるようにした! Provisioning周りを久しぶりにいじってたけど、完全に忘れていた、、、

導入としては、下記リンク先の概念図が非常にわかりやすいと思う
http://qiita.com/fujisan3/items/d037e3c40a0acc46f618

iOS devの操作→Google Driveを使ってAd-Hoc公開までの手順は、
忘れないうちにまとめておこう…

2015年12月19日土曜日

UILabel, UIView, UIButtonの角を丸くする

UILabelとUIViewの場合
 
UILabel *label =  [UILabel alloc]init];
label.clipsToBounds = true;
label.layer.cornerRadius = 3.0f;

UIView *view = [UIView alloc]init];
view.clipsToBounds = true;
view.layer.cornerRadius = 3.0f;
UIButtonの場合
 
UIButton *button = [UIButton alloc]init];
button.layer.cornerRadius = 3.0f;